\( \because \) PMI \( \leftrightarrow \) LNNP, we proove by suppose LNNP holds.
Let $$ S = \{ n \in N : 1 \in S : \{ 1, 2, 3 \dots n\} \subseteq S \implies n+1 \in S \} $$ Suppose $$ N - S \not = \emptyset $$ By LNNP $$ \exists m \in N - S , m \not = 1 $$ is the smallest member. Therefore $$ m - 1 \in S $$ Furthermore $$ m - 2, m - 3 \dots 1 \in S $$ $$ \because 1, 2, 3 \dots m - 1 \in S \\ \implies m \in S $$ Thus we have a contradiction. Hence $$ S = N $$
沒有留言:
張貼留言